
HYBRID COMPUTING

Content Overview: discusses the integration of various computing paradigms, such as classical, quantum, and

neural network-based systems. The focus might be on how hybrid computing can address complex problems,

improve data analysis, and optimize computational tasks.

NUMERICAL DIVERSITY IN AI

Content Overview: explores the use of diverse numerical systems, such as binary, decimal, and higher bases, in

AI development. The document probably discusses the potential for these diverse systems to enhance AI

algorithms, improve computational efficiency, and offer new perspectives in data processing and machine

learning.

QUANTUM NUMERALS

Content Overview: delves into the application of numerical systems within the context of quantum computing.

Topics might include the development of quantum algorithms inspired by various numeral systems and their

implications for computational efficiency and data encryption.

QUANTUM CIRCUITS

Content Overview: discusses the design and application of quantum circuits, essential components in quantum

computing. The document may cover the challenges and innovations in creating quantum circuits that can

efficiently process complex computations and contribute to advancements in quantum computing and AI.

STATELESS MNEMONIC SYSTEM

i. Background and Transformation: Discusses personal background, including early career success, the

impact of a schizophrenia diagnosis, and subsequent academic pursuits.

ii. Current Motivations and Aspirations: Focuses on the desire to contribute to AI/ML, emphasizing the

importance of ideas and their implementation.

iii. Personal Context and Lifestyle: Details a modest, focused lifestyle, conducive to deep intellectual

exploration.

iv. Unique Perspective: Highlights the unique blend of pragmatism and creativity borne from personal

experiences, valuable in AI and ML.

v. Looking Forward: Describes the aspiration to bridge conceptual ideation with practical

implementation in AI, seeking collaboration and guidance.

vi. Hypothesis for Stateless Mnemonic System: Proposes enhancing AI efficiency and privacy through a

stateless mnemonic system, contrasting it with traditional stateful AI models.

vii. Conceptual Brainstorming: Suggests novel approaches for stateless AI learning, including quantum-

assisted processing and data-driven hallucinations.

a series of groundbreaking documents has emerged, weaving together the past, present, and future of AI and

quantum computing. These documents collectively paint a visionary picture of a technological renaissance,

reshaping our understanding of computation and its possibilities.(ChatGPT 4.5 2023) so that the validation

sorted so back to the plan:

HYBRID COMPUTING: A CONVERGENCE OF PARADIGMS

At the forefront is the concept of Hybrid Computing, a pioneering approach that amalgamates classical

computing, quantum mechanics, and neural networks. This integration promises to tackle complex problems

with unprecedented efficiency, enhancing data analysis and optimizing computational tasks in ways previously

unimagined. The exploration into hybrid systems marks a crucial step towards a future where the boundaries

of computation are endlessly expanded.

NUMERICAL DIVERSITY IN AI: BEYOND BINARY

The exploration into Numerical Diversity in AI marks a significant shift from traditional binary constraints.

By embracing a spectrum of numerical systems, from the familiar binary to the more expansive decimal and

beyond, this approach unlocks new dimensions in AI algorithm development. It suggests a future where AI can

process and analyse data with a finesse and depth, mirroring the intricate diversity of the natural world.

QUANTUM NUMERALS: BRIDGING ERAS

In the realm of quantum computing, Quantum Numerals stands as a testament to the fusion of ancient

numerical wisdom with quantum realities. It envisions a future where algorithms, inspired by historical

numeral systems, bring a new layer of computational efficiency and data encryption. This approach not only

pays homage to our mathematical heritage but also propels it into the quantum age.

QUANTUM CIRCUITS: THE BUILDING BLOCKS OF TOMORROW

The development and optimization of Quantum Circuits is a critical focus, serving as the foundation for

quantum computing’s potential. This exploration delves into the intricacies of designing circuits that can

process complex computations, driving forward the advancements in AI and quantum computing. The future

here is one of boundless possibilities, where quantum circuits become the bedrock of next-generation

technology.

STATELESS MNEMONIC SYSTEM: A PERSONAL JOURNEY

Grounded in a deeply personal narrative, the Stateless Mnemonic System introduces a unique perspective

to AI development. It proposes an AI model that enhances efficiency and privacy, diverging from traditional

methods. The document underscores a future where AI is not just a tool but an extension of human

experience and creativity, shaped by personal journeys and diverse perspectives.

FUTURE PERSPECTIVES

Encompassing these diverse but interconnected domains, the idea spaces presented in these documents chart

a course towards a future where computation transcends its current limitations. It's a future envisaged with AI

that mirrors the depth and diversity of human thought, quantum systems that unravel the mysteries of the

universe, and hybrid models that harmonize the best of all computational worlds. This future is not just about

technological advancement; it's about the synthesis of human ingenuity across time and space, opening doors

to discoveries that redefine what it means to compute. As we stand at this crossroads of history and

innovation, these documents serve as beacons, guiding us towards a future where the full potential of

computation is finally realized.

ASTRONOMY PROJECT FOCUS

i. https://youtu.be/8QjYHnMrBKo

ii. https://youtu.be/hzmm8gL4L7k

iii. https://youtu.be/HFnSSyBKc_Y

iv. https://youtu.be/xr96xPhD_ig

v. https://youtu.be/QS6p6IOzdhg

vi. https://youtu.be/A6t9GcKjKmU

vii. https://youtu.be/eavwy74Oel8

viii. https://youtu.be/PR0b4T1_y2o

ix. https://youtu.be/XSZ-b8WbiMo

x. https://youtu.be/OpiYEeEEl7k

xi. https://youtu.be/K6hOqiKxfjo

xii. https://youtu.be/58vlmrJtKxk

xiii. https://youtu.be/r4dbLu7-kFc

xiv. https://youtu.be/Os5Ewql9VZQ

xv. https://youtu.be/kDuw_bZwccA

xvi. https://youtu.be/FHrIJAh04K0

xvii. https://youtu.be/pAPvPgR-tas

xviii. https://youtu.be/G0QICezf6gQ

xix. https://youtu.be/wDxPxOYspNQ

xx. https://www.youtube.com/watch?v=MxBar_4jPM0

SUMMARISEDWITH:

https://youtu.be/OiHUtesdw2s

https://youtu.be/8QjYHnMrBKo
https://youtu.be/hzmm8gL4L7k
https://youtu.be/HFnSSyBKc_Y
https://youtu.be/xr96xPhD_ig
https://youtu.be/QS6p6IOzdhg
https://youtu.be/A6t9GcKjKmU
https://youtu.be/eavwy74Oel8
https://youtu.be/PR0b4T1_y2o
https://youtu.be/XSZ-b8WbiMo
https://youtu.be/OpiYEeEEl7k
https://youtu.be/K6hOqiKxfjo
https://youtu.be/58vlmrJtKxk
https://youtu.be/r4dbLu7-kFc
https://youtu.be/Os5Ewql9VZQ
https://youtu.be/kDuw_bZwccA
https://youtu.be/FHrIJAh04K0
https://youtu.be/pAPvPgR-tas
https://youtu.be/G0QICezf6gQ
https://youtu.be/wDxPxOYspNQ
https://www.youtube.com/watch?v=MxBar_4jPM0
https://youtu.be/OiHUtesdw2s

TIME

i. https://youtu.be/MgklHrz_Oyw

ii. https://www.youtube.com/watch?v=TOQKrys9AwE&t=231s

iii. https://youtu.be/OiHUtesdw2s

iv. https://youtu.be/zfi0lsGsmRI

v. https://www.youtube.com/watch?v=UDD6CnVhLUQ

vi. https://www.youtube.com/watch?v=TOQKrys9AwE&t=231s

vii. https://www.youtube.com/watch?v=TOQKrys9AwE&t=231s

the original idea space is described in:

https://www.youtube.com/watch?v=uAl7g5aJ2iA&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=1

on a personal note, would Dr andy Davies consider this as valid UX experiences and be consider as submission

towards academic validity, or is it just fun to create??

https://www.youtube.com/watch?v=lsy4ncAYErI&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=3

https://www.youtube.com/watch?v=zfi0lsGsmRI&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=4

https://www.youtube.com/watch?v=XSfSpY4r0B0&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=15

https://www.youtube.com/watch?v=VzWW3mdzuC8&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=17

https://www.youtube.com/watch?v=fBgAPoB95kc&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=18

https://www.youtube.com/watch?v=iJvSN-cm1s0&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=20

https://www.youtube.com/watch?v=6JpdytrFgLw&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=26

these are ideas I had a few years ago in game development.

https://www.youtube.com/watch?v=iJ2RvLS_7hc&list=PLOnIlRYk-3iFawkWFDQy0ToZShKdmQpX6&index=1

for note FS22 has only just been released and is a rich environment for xml and UI for models.

This could be done very quickly: https://www.youtube.com/watch?v=ShlarMyM3cc&list=PLOnIlRYk-

3iFawkWFDQy0ToZShKdmQpX6&index=8

About the time it was being developed, we had ideas: https://www.youtube.com/playlist?list=PLOnIlRYk-

3iEHEqA6hsJv-e6T_vsbhd5Q

https://youtu.be/MgklHrz_Oyw
https://www.youtube.com/watch?v=TOQKrys9AwE&t=231s
https://youtu.be/OiHUtesdw2s
https://youtu.be/zfi0lsGsmRI
https://www.youtube.com/watch?v=UDD6CnVhLUQ
https://www.youtube.com/watch?v=TOQKrys9AwE&t=231s
https://www.youtube.com/watch?v=TOQKrys9AwE&t=231s
https://www.youtube.com/watch?v=uAl7g5aJ2iA&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=1
https://www.youtube.com/watch?v=lsy4ncAYErI&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=3
https://www.youtube.com/watch?v=zfi0lsGsmRI&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=4
https://www.youtube.com/watch?v=XSfSpY4r0B0&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=15
https://www.youtube.com/watch?v=VzWW3mdzuC8&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=17
https://www.youtube.com/watch?v=fBgAPoB95kc&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=18
https://www.youtube.com/watch?v=iJvSN-cm1s0&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=20
https://www.youtube.com/watch?v=6JpdytrFgLw&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=26
https://www.youtube.com/watch?v=iJ2RvLS_7hc&list=PLOnIlRYk-3iFawkWFDQy0ToZShKdmQpX6&index=1
https://www.youtube.com/watch?v=ShlarMyM3cc&list=PLOnIlRYk-3iFawkWFDQy0ToZShKdmQpX6&index=8
https://www.youtube.com/watch?v=ShlarMyM3cc&list=PLOnIlRYk-3iFawkWFDQy0ToZShKdmQpX6&index=8
https://www.youtube.com/playlist?list=PLOnIlRYk-3iEHEqA6hsJv-e6T_vsbhd5Q
https://www.youtube.com/playlist?list=PLOnIlRYk-3iEHEqA6hsJv-e6T_vsbhd5Q

FUTURE THINKING

Modified Newtonian Dynamics (MOND) is a hypothesis that proposes an alternative to Newton's law of

universal gravitation and Einstein's theory of General Relativity. It was formulated by Mordechai Milgrom in

1983 to address certain astronomical observations that cannot be explained adequately by the standard model

of cosmology, particularly the behaviour of galaxies and the discrepancy between the mass of visible matter

and the gravitational effect observed (which is commonly attributed to dark matter).

Key aspects of MOND include:

i. Low Acceleration Threshold: MOND introduces the idea that Newton's laws of motion are not

entirely accurate at very low accelerations, such as those found in the outer regions of galaxies. Below

a certain threshold, the effective force of gravity is stronger than predicted by Newtonian physics.

ii. Galactic Rotation Curves: One of the primary motivations for MOND was to explain the flat rotation

curves of galaxies without invoking dark matter. In Newtonian gravity, the rotational speed of stars in

a galaxy should decrease at larger distances from the galaxy's centre. However, observations show

that these speeds remain more or less constant (flat rotation curve), which suggests the presence of

an unseen mass (dark matter) or a modification in the laws of gravity (as MOND proposes).

iii. Tully-Fisher Relation: MOND naturally accounts for the empirical Tully-Fisher relation, which

correlates the luminosity of a spiral galaxy with its rotational velocity. Under MOND, this relation is a

direct consequence of the modified dynamics.

iv. Criticism and Challenges: Despite its successes in explaining certain galactic phenomena, MOND faces

challenges. It does not naturally fit into the framework of General Relativity, and it has difficulty

accounting for observations at larger cosmological scales, like the cosmic microwave background

radiation and the distribution of galaxies in clusters. Additionally, phenomena such as gravitational

lensing and certain galaxy cluster dynamics are more easily explained by the presence of dark matter.

v. Alternatives and Extensions: Various extensions and alternatives to MOND have been proposed,

attempting to reconcile it with General Relativity and other cosmological observations. These include

theories like TeVeS (Tensor–Vector–Scalar Gravity) and others that attempt to modify the laws of

gravity at different scales.

MOND remains a topic of active research and debate in the astrophysical community. It highlights the ongoing

quest to understand the true nature of gravity and the composition of the universe.

To describe a mathematical curve that oscillates between -1 and 1, with both positive and negative portions,

you can use a sine or cosine function, which are fundamental trigonometric functions. These functions

naturally oscillate between -1 and 1 and are commonly used to represent periodic phenomena.

Here's a basic example using the sine function:

f(x)=sin(x)

In this equation, x represents the angle in radians, and (x), the value of the sine function, varies

between -1 and 1 as x changes. The curve sin f(x)=sin(x) crosses the x-axis (where the function

equals 0) at x=0, π, 2π, and so on.

The cosine function is similar but starts at 1 when x=0:

f(x)=cos(x)

Both of these functions exhibit a wave-like pattern that oscillates above and below the x-axis, with peaks at 1

and troughs at -1.

If you want a curve that tends more sharply towards -1 and 1, you can modify these functions. For instance, a

sine function with a steeper curve might look like:

f(x)=sin2(x)

This function squares the result of the sine function, which makes the curve steeper as it approaches 1 and -1,

but still oscillates between these values. However, note that squaring the sine function would actually

constrain the output to be non-negative (between 0 and 1), so for the original requirement (oscillating

between -1 and 1), the simple sine or cosine function would be more appropriate.

THE PYTHON SCRIPT:

import matplotlib.pyplot as plt

import numpy as np

Define the range for x

x = np.linspace(-2 * np.pi, 2 * np.pi, 1000)

Define the sine and cosine functions

y_sine = np.sin(x)

y_cosine = np.cos(x)

Plotting the sine function

plt.figure(figsize=(10, 4))

plt.plot(x, y_sine, label='f(x) = sin(x)')

plt.title("Sine Function: f(x) = sin(x)")

plt.xlabel('x')

plt.ylabel('f(x)')

plt.axhline(0, color='black', linewidth=0.5)

plt.axvline(0, color='black', linewidth=0.5)

plt.grid(True)

plt.legend()

plt.show()

Plotting the cosine function

plt.figure(figsize=(10, 4))

plt.plot(x, y_cosine, label='f(x) = cos(x)')

plt.title("Cosine Function: f(x) = cos(x)")

plt.xlabel('x')

plt.ylabel('f(x)')

plt.axhline(0, color='black', linewidth=0.5)

plt.axvline(0, color='black', linewidth=0.5)

plt.grid(True)

plt.legend()

plt.show()

The Modified Newtonian Dynamics (MOND) theory primarily alters the Newtonian

force law to account for the observed dynamics of galaxies without invoking dark

matter. The MOND formula is generally represented as follows:

F=m⋅a⋅μ(a0a)

Here,

F is the force,

m is the mass,

a is the acceleration,

μ(x) is an interpolation function, and

0a0 is a characteristic acceleration constant of MOND, below which the Newtonian

dynamics are not applicable.

The function μ(x) behaves as follows:

1μ(x)≈1 when ≫1 (i.e., at high accelerations, the law reduces to Newton's second

law),

μ(x)≈x when ≪1x≪1 (i.e., at low accelerations, the law deviates from Newtonian

dynamics, leading to the MOND regime).

This modification of Newton's law in MOND is specifically designed to address the

behaviour of astronomical objects in regimes where the gravitational acceleration is

very small. The exact form of the function μ(x) can vary in different formulations of

MOND, but its general behaviour is to transition between the Newtonian regime at

high accelerations and the MOND regime at low accelerations.

PYTHON SCRIPT

def mond_force(m, a, a0):

 """

 Calculate the force using the MOND formula.

 Parameters:

 m (float): mass

 a (float): acceleration

 a0 (float): characteristic acceleration constant of MOND

 Returns:

 float: force as per MOND

 """

 def mu(x):

 if x > 1:

 return 1

 elif x < 1:

 return x

 else:

 # Define behavior at x = 1 if needed, or handle it as a special

case

 return 1

 return m * a * mu(a / a0)

Example usage

mass = 10 # mass in arbitrary units

acceleration = 0.01 # acceleration in arbitrary units

a0 = 1.2e-10 # a characteristic acceleration constant of MOND, in m/s²

force = mond_force(mass, acceleration, a0)

print("Force according to MOND:", force)

Here’s a strategy to propose this collaborative effort:

Hello Dr. Becky and fellow astronomy enthusiasts,

We're embarking on an exciting project to develop a universal interface for Gaia data, focusing on binary stars

and large-scale cosmic structures. Our aim is to make this rich data more accessible and to uncover new

insights into the dynamics of star systems and galaxies.

Your expertise in astrophysics and the creative minds in your viewer community can significantly enhance this

endeavour. We would love to hear your thoughts and ideas on this project. Together, we can explore the

vastness of our universe in ways never done before!

For those interested in contributing or learning more, [link to project details]. Let's unravel the mysteries of

the cosmos together!

Best regards,

l00king

The sketch:

Step 1: Developing a Universal Interface for Gaia Data

Objective: Create an accessible and user-friendly interface that can facilitate the exploration and analysis of

Gaia data, especially focusing on binary stars and large-scale star interactions.

PROPOSAL OUTLINE:

i. Introduction: Briefly explain the significance of Gaia data in understanding cosmic structures.

ii. Need for the Interface: Describe how a universal interface can democratize data access and

analysis.

iii. Technical Approach: Outline the technical framework for the interface, including data visualization

tools, filtering options, and analytical capabilities.

Step 2: Data Sifting Plan

i. Objective: Develop methodologies to efficiently sift through Gaia data to identify key areas of

interest in binary star systems and larger star group dynamics.

ii. Collaborative Approach:

iii. Crowdsourcing Ideas: Encourage Dr. Becky’s viewers to contribute ideas on how to analyse and

interpret the data.

iv. Data Challenges: Organize online challenges or hackathons inviting participants to explore specific

aspects of Gaia data.

Step 3: Reaching Out to Dr. Becky Smethurst

APPEAL FOR COLLABORATION:

i. Draft a Comment: Compose an engaging and concise comment for her YouTube channel,

highlighting the project's aim and its significance in astrophysics.

ii. Express the Need for Expertise: Emphasize how Dr. Becky's expertise and her viewers' diverse

perspectives can contribute significantly to the project.

iii. Engaging Her Viewers:

iv. Call to Action: Include a clear call to action in the comment, inviting viewers to participate,

contribute ideas, or use the data interface.

v. Incentivize Participation: Consider offering recognition, certificates, or opportunities to co-author

in any potential publications that may arise from this collaboration.

To be considered https://www.youtube.com/watch?v=AkN5AL8Vx8k

FAO Rich: https://youtu.be/cs6iw572LLs this what the probe delivers the material science in a

nutshell https://youtu.be/2smnlT-PKB4

import matplotlib.pyplot as plt

import numpy as np

from mpl_toolkits.mplot3d import Axes3D

Define the radius of the sphere (in arbitrary units)

radius = 15 # Assuming the radius as 15 for illustration

Define the number of points (increase for higher resolution)

num_pts = 1000

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

Create a sphere

u = np.linspace(0, 2 * np.pi, num_pts)

v = np.linspace(0, np.pi, num_pts)

x = radius * np.outer(np.cos(u), np.sin(v))

y = radius * np.outer(np.sin(u), np.sin(v))

z = radius * np.outer(np.ones(np.size(u)), np.cos(v))

Plot the sphere

ax.plot_surface(x, y, z, color='b')

plt.show()

To create a projection of the James Webb Space Telescope (JWST) data or images, we need to consider several

key aspects:

i. Field of View (FoV): The JWST's instruments have different fields of view, which is the area of the

sky they can observe at one time. For example, the Near-Infrared Camera (NIRCam) has a field of view

of about 2.2 arcminutes x 4.4 arcminutes for each of its two modules.

ii. Angular Resolution: This is the smallest angle between two objects that the telescope can

distinguish. JWST's angular resolution varies based on the instrument and the wavelength of light. For

NIRCam, it ranges around 0.031 arcseconds at 2 micrometres.

iii. Pixel Size: The size of each pixel in the JWST's detectors affects how data is represented. NIRCam,

for instance, has a pixel scale of about 0.031 arcseconds per pixel.

iv. Projection Type: Typically, astronomical data are projected onto a two-dimensional plane for

analysis. The type of projection (e.g., Mercator, Mollweide) can vary based on the data and the

intended use.

CREATING A JWST PROJECTION IN PYTHON

https://www.youtube.com/watch?v=AkN5AL8Vx8k
https://youtu.be/cs6iw572LLs
https://youtu.be/2smnlT-PKB4

To simulate a JWST projection, you could use astronomical data processing libraries like Astropy in Python.

Here's a simple framework for how such a script might look, keeping in mind that actual JWST data would be

required for a genuine projection:

from astropy.io import fits

import matplotlib.pyplot as plt

from astropy.wcs import WCS

Example file path to a JWST data file (FITS format)

file_path = 'path_to_jwst_data.fits'

Open the FITS file and load data

with fits.open(file_path) as hdul:

 data = hdul[0].data

 header = hdul[0].header

Set up the World Coordinate System

wcs = WCS(header)

Plot the data

plt.figure(figsize=(10, 10))

plt.subplot(projection=wcs)

plt.imshow(data, origin='lower', cmap='gray')

plt.xlabel('RA')

plt.ylabel('Dec')

plt.title('JWST Data Projection')

plt.show()

This script is a basic representation and would need actual data to function. It assumes the use of a FITS file,

which is a common format for astronomical data. The WCS (World Coordinate System) is used to correctly

project the celestial coordinates (Right Ascension, RA; Declination, Dec) onto a 2D image.

For a specific and accurate JWST data projection, you would need:

i. Actual JWST data in FITS format.

ii. Specific details about the instrument and observation mode.

iii. Appropriate libraries and tools for data processing and visualization.

This framework can be a starting point and modified according to the specifics of the data and the goals of

your project.

To calculate how many pixels from the James Webb Space Telescope (JWST) would be needed to represent a

sphere, such as the observable universe, we first need to understand a few key points:

The Size of the Sphere: You mentioned a radius of 15 billion light-years. The diameter would thus be 30 billion

light-years.

Conversion to Arcseconds: To calculate how many pixels cover the sphere, we need to convert the sphere's

surface area into the same units used for JWST's resolution (arcseconds). This involves converting linear

distance to angular size, which depends on the distance from the observer to the object. For the observable

universe, this is an extremely complex calculation due to the expansion of the universe and the fact that we're

looking at a spherical surface, not a flat image.

JWST's Resolution: At around 0.031 arcseconds per pixel at 2 micrometres, this is the finest detail JWST can

resolve.

The challenge is that JWST measures angles on the sky, not distances. So, the number of pixels needed to

cover a sphere of the observable universe is not a straightforward calculation. JWST's resolution applies to a

small field of view, not the entire sky or a large spherical surface.

However, for a rough estimation, we can consider the total sky area JWST would need to cover:

The total sky area is 4π steradians.

A steradian (symbol: sr) is the SI unit of solid angle measurement in three-dimensional space. Just as the radian

is a measure of angle in two dimensions (representing the ratio of arc length to radius in a circle), the steradian

measures angles in three dimensions. It helps quantify how large an object appears to an observer's eye from

a particular point in space.

To understand a steradian more intuitively:

Sphere and Steradian: Imagine a sphere cantered around an observation point. If you project a unit area (1

square meter, for instance) onto the surface of a sphere with a radius of 1 meter, the solid angle this area

subtends at the centre of the sphere is 1 steradian.

Total Solid Angle of a Sphere: The total solid angle around a point in 3D space is 4π steradians. This comes

from the formula for the surface area of a sphere (4πr2) divided by 2r2 (since the radius squared is the

definition of the unit area in steradians).

Applications: Steradians are used in various fields, including physics, astronomy, and radiometry, to measure

things like luminous flux emitted by a light source in a particular direction, the field of view of telescopes or

cameras, or the radiant intensity of a source.

Understanding steradians is crucial for interpreting astronomical data and making calculations related to the

field of view or light emission in three-dimensional space.

If you use the diameter instead of the radius in the calculations involving steradians, the relationship changes

slightly. Let's break down the mathematics:

The total solid angle of a sphere in steradians is calculated using the sphere's surface area and its radius. The

formula for the surface area A of a sphere is 4πr2, where r is the radius of the sphere.

If you want to use the diameter d instead, remember that the diameter is twice the radius d=2r). Therefore,

the radius r is half the diameter (2r=2d).

Substituting r with d/2 in the surface area formula gives:

2A=4π(2/d)2

Simplifying this, we get:

A=πd2

This is the formula for the surface area of a sphere using its diameter.

Now, for the solid angle in steradians, the surface area of a sphere is divided by the square of its radius. If you

use the diameter, the formula would change to:

Solid Angle=Surface Area/ (d/2)2

Substituting A=πd2 into the above formula, you get:

Solid Angle= Solid Angle=(πd2/2d)2

This simplifies to:

Solid Angle=4π

So, the total solid angle around a point in 3D space remains 4π steradians, whether you use the radius or the

diameter in the calculation. The key difference is in how you express the sphere's surface area in terms of

radius or diameter.

One steradian corresponds to about (180/π)2×602×602 arcseconds squared (since there are 60

arcminutes in a degree and 60 arcseconds in an arcminute).

Therefore, the total sky in arcseconds squared is:

×(180/π)2×602×602.

Dividing this by the area that one JWST pixel covers (0.03120.0312 arcseconds squared) gives the total

number of pixels needed to cover the whole sky.

Calculate the total sky area in arcseconds squared:

Sky Area=4π×(π180)2×602×602

Calculate the area covered by one JWST pixel:

Pixel Area=0.0312

Divide the total sky area by the area of one pixel to get the total number of pixels:

Total Pixels=Total Sky Area/Pixel Area

This calculation will give you an estimate of how many pixels from the JWST would be needed to cover the

entire sky, which is a two-dimensional representation. Representing a three-dimensional sphere like the

observable universe is a more complex task and requires additional considerations beyond the scope of this

calculation. The number you get will be an approximation and should be interpreted within the context of

these limitations.

import numpy as np

Constants

arcseconds_per_steradian = (180 / np.pi) ** 2 * 60 ** 2 * 60 ** 2

total_sky_steradians = 4 * np.pi

jwst_pixel_area_arcsec2 = 0.031 ** 2

Total sky area in arcseconds squared

total_sky_arcsec2 = total_sky_steradians * arcseconds_per_steradian

Number of pixels needed to cover the total sky

total_pixels = total_sky_arcsec2 / jwst_pixel_area_arcsec2

Convert the number of pixels to a more readable format

total_pixels_formatted = "{:.8e}".format(total_pixels)

print("Total number of JWST pixels needed to cover the sky:",

total_pixels_formatted)

This script will calculate the estimated number of JWST pixels required to cover the entire sky, given its

angular resolution. You can run this script in any standard Python environment with NumPy installed

to get the result. Remember, this calculation provides a theoretical estimate for a two-dimensional

representation of the sky, not for a three-dimensional sphere.

When dealing with measurements, whether in the realm of the very small (like quantum scales) or the very

large (such as astronomical distances), the choice between using radius (r) or diameter (d) usually depends on

the context and what makes the calculation or the conceptualization easier. For modeling spheres in AI or any

computational model, the choice again depends on the specific requirements of the model and the nature of

the data being used.

CONTEXTUAL PREFERENCES:

i. Quantum Scales: At quantum scales, dimensions are often so small that using the diameter can

sometimes provide a more intuitive measure. For example, in particle physics, diameters are often

used to describe particles and subatomic structures.

ii. Astronomical Scales: In astronomy, the radius is more commonly used, especially when discussing

celestial bodies like stars and planets. This is partly due to historical conventions and partly because

the radius directly relates to other important characteristics like volume and surface area.

INTEGRATING SPHERE MATHEMATICS INTO AI MODELS:

i. Choosing Radius or Diameter: When building an AI model that involves spherical mathematics,

you can choose to use either radius or diameter. The key is consistency and clarity in how you define

and use these measures. For ease of calculations involving surface area and volume, the radius is

often preferred.

ii. Data Representation: Ensure that the data used in the model is consistently represented. If the

data set uses radius for spherical measurements, your model should also use radius unless there's a

compelling reason to convert to diameter.

iii. Calculations and Algorithms: When programming the model, use mathematical formulas that

correspond to the chosen measure. For sphere-related calculations (like surface area, volume, or

calculations involving solid angles), adapt the formulas accordingly.

iv. Visualization and Interpretation: If your AI model involves visualizing data or interpreting results

related to spheres, choose the measure (radius or diameter) that makes the most sense for your

target audience or the specific application.

v. Scalability: Consider the scalability of the model. For very large or very small scales, you might need

to adjust the precision of your calculations. Floating-point arithmetic in computers can introduce

errors, especially for very small or very large numbers.

In summary, whether to use radius or diameter in AI models involving spheres depends on the nature of the

data, the requirements of the model, and the context in which the model will be used. Consistency and clarity

in the use of these measures are crucial for the accuracy and reliability of the model.

expressing the mathematics of circles and spheres in terms of diameter (d) can simplify the presentation and

make the numbers more intuitive to handle. Let's define the key formulas:

FOR A CIRCLE:

Diameter (d): The longest straight line that can be drawn across the circle, passing through the centre.

Circumference (C): The total length around the circle. The formula in terms of diameter is:

C=π×d

Area (A): The amount of space enclosed by the circle. The formula in terms of diameter is:

A=4π×d2 This is derived from the standard area formula πr2 by substituting r=2/d.

FOR A SPHERE:

Diameter (d): The longest straight line that can be drawn through the sphere, passing through the centre.

Surface Area (SA): The total area covered by the surface of the sphere. The formula in terms of diameter is:

A=π×d2

This is derived from the standard surface area formula 4πr2 by substituting r=2/d.

Volume (V): The amount of space enclosed by the sphere. The formula in terms of diameter is:

V=6π×d3 This is derived from the standard volume formula 3/4πr3 by substituting r=2/d.

Using the diameter in these formulas makes the numbers more straightforward, especially in contexts where

the diameter is a more natural or convenient measure than the radius. This approach can be particularly useful

in presentations or educational settings, where ease of understanding is crucial.

Python definitions for calculations involving circles and spheres using

diameter

def circle_circumference(d):

 """

 Calculate the circumference of a circle given its diameter.

 Parameters:

 d (float): Diameter of the circle

 Returns:

 float: Circumference of the circle

 """

 return 3.141592653589793 * d

def circle_area(d):

 """

 Calculate the area of a circle given its diameter.

 Parameters:

 d (float): Diameter of the circle

 Returns:

 float: Area of the circle

 """

 return 3.141592653589793 / 4 * d ** 2

def sphere_surface_area(d):

 """

 Calculate the surface area of a sphere given its diameter.

 Parameters:

 d (float): Diameter of the sphere

 Returns:

 float: Surface area of the sphere

 """

 return 3.141592653589793 * d ** 2

def sphere_volume(d):

 """

 Calculate the volume of a sphere given its diameter.

 Parameters:

 d (float): Diameter of the sphere

 Returns:

 float: Volume of the sphere

 """

 return 3.141592653589793 / 6 * d ** 3

Example usage:

diameter = 10 # Example diameter

print("Circumference of circle:", circle_circumference(diameter))

print("Area of circle:", circle_area(diameter))

print("Surface area of sphere:", sphere_surface_area(diameter))

print("Volume of sphere:", sphere_volume(diameter))

