
HYBRID COMPUTING 

Content Overview: discusses the integration of various computing paradigms, such as classical, quantum, and 

neural network-based systems. The focus might be on how hybrid computing can address complex problems, 

improve data analysis, and optimize computational tasks. 

NUMERICAL DIVERSITY IN AI  

Content Overview: explores the use of diverse numerical systems, such as binary, decimal, and higher bases, in 

AI development. The document probably discusses the potential for these diverse systems to enhance AI 

algorithms, improve computational efficiency, and offer new perspectives in data processing and machine 

learning. 

QUANTUM NUMERALS  

Content Overview: delves into the application of numerical systems within the context of quantum computing. 

Topics might include the development of quantum algorithms inspired by various numeral systems and their 

implications for computational efficiency and data encryption. 

QUANTUM CIRCUITS  

Content Overview: discusses the design and application of quantum circuits, essential components in quantum 

computing. The document may cover the challenges and innovations in creating quantum circuits that can 

efficiently process complex computations and contribute to advancements in quantum computing and AI. 

STATELESS MNEMONIC SYSTEM  

i. Background and Transformation: Discusses personal background, including early career success, the 

impact of a schizophrenia diagnosis, and subsequent academic pursuits. 

ii. Current Motivations and Aspirations: Focuses on the desire to contribute to AI/ML, emphasizing the 

importance of ideas and their implementation. 

iii. Personal Context and Lifestyle: Details a modest, focused lifestyle, conducive to deep intellectual 

exploration. 

iv. Unique Perspective: Highlights the unique blend of pragmatism and creativity borne from personal 

experiences, valuable in AI and ML. 

v. Looking Forward: Describes the aspiration to bridge conceptual ideation with practical 

implementation in AI, seeking collaboration and guidance. 

vi. Hypothesis for Stateless Mnemonic System: Proposes enhancing AI efficiency and privacy through a 

stateless mnemonic system, contrasting it with traditional stateful AI models. 

vii. Conceptual Brainstorming: Suggests novel approaches for stateless AI learning, including quantum-

assisted processing and data-driven hallucinations. 

  



a series of groundbreaking documents has emerged, weaving together the past, present, and future of AI and 

quantum computing. These documents collectively paint a visionary picture of a technological renaissance, 

reshaping our understanding of computation and its possibilities.(ChatGPT 4.5 2023) so that the validation 

sorted        so back to the plan: 

 

HYBRID COMPUTING: A CONVERGENCE OF PARADIGMS  

At the forefront is the concept of Hybrid Computing, a pioneering approach that amalgamates classical 

computing, quantum mechanics, and neural networks. This integration promises to tackle complex problems 

with unprecedented efficiency, enhancing data analysis and optimizing computational tasks in ways previously 

unimagined. The exploration into hybrid systems marks a crucial step towards a future where the boundaries 

of computation are endlessly expanded. 

NUMERICAL DIVERSITY IN AI: BEYOND BINARY  

The exploration into Numerical Diversity in AI marks a significant shift from traditional binary constraints. 

By embracing a spectrum of numerical systems, from the familiar binary to the more expansive decimal and 

beyond, this approach unlocks new dimensions in AI algorithm development. It suggests a future where AI can 

process and analyse data with a finesse and depth, mirroring the intricate diversity of the natural world. 

QUANTUM NUMERALS: BRIDGING ERAS  

In the realm of quantum computing, Quantum Numerals stands as a testament to the fusion of ancient 

numerical wisdom with quantum realities. It envisions a future where algorithms, inspired by historical 

numeral systems, bring a new layer of computational efficiency and data encryption. This approach not only 

pays homage to our mathematical heritage but also propels it into the quantum age. 

QUANTUM CIRCUITS: THE BUILDING BLOCKS OF TOMORROW  

The development and optimization of Quantum Circuits is a critical focus, serving as the foundation for 

quantum computing’s potential. This exploration delves into the intricacies of designing circuits that can 

process complex computations, driving forward the advancements in AI and quantum computing. The future 

here is one of boundless possibilities, where quantum circuits become the bedrock of next-generation 

technology. 

STATELESS MNEMONIC SYSTEM: A PERSONAL JOURNEY  

Grounded in a deeply personal narrative, the Stateless Mnemonic System introduces a unique perspective 

to AI development. It proposes an AI model that enhances efficiency and privacy, diverging from traditional 

methods. The document underscores a future where AI is not just a tool but an extension of human 

experience and creativity, shaped by personal journeys and diverse perspectives. 

FUTURE PERSPECTIVES 

Encompassing these diverse but interconnected domains, the idea spaces presented in these documents chart 

a course towards a future where computation transcends its current limitations. It's a future envisaged with AI 

that mirrors the depth and diversity of human thought, quantum systems that unravel the mysteries of the 

universe, and hybrid models that harmonize the best of all computational worlds. This future is not just about 

technological advancement; it's about the synthesis of human ingenuity across time and space, opening doors 



to discoveries that redefine what it means to compute. As we stand at this crossroads of history and 

innovation, these documents serve as beacons, guiding us towards a future where the full potential of 

computation is finally realized. 

  



ASTRONOMY PROJECT FOCUS 

i. https://youtu.be/8QjYHnMrBKo 

ii. https://youtu.be/hzmm8gL4L7k 

iii. https://youtu.be/HFnSSyBKc_Y 

iv. https://youtu.be/xr96xPhD_ig 

v. https://youtu.be/QS6p6IOzdhg 

vi. https://youtu.be/A6t9GcKjKmU 

vii. https://youtu.be/eavwy74Oel8 

viii. https://youtu.be/PR0b4T1_y2o 

ix. https://youtu.be/XSZ-b8WbiMo 

x. https://youtu.be/OpiYEeEEl7k 

xi. https://youtu.be/K6hOqiKxfjo 

xii. https://youtu.be/58vlmrJtKxk 

xiii. https://youtu.be/r4dbLu7-kFc 

xiv. https://youtu.be/Os5Ewql9VZQ 

xv. https://youtu.be/kDuw_bZwccA 

xvi. https://youtu.be/FHrIJAh04K0 

xvii. https://youtu.be/pAPvPgR-tas 

xviii. https://youtu.be/G0QICezf6gQ 

xix. https://youtu.be/wDxPxOYspNQ 

xx. https://www.youtube.com/watch?v=MxBar_4jPM0 

SUMMARISEDWITH: 

https://youtu.be/OiHUtesdw2s 
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TIME 

i. https://youtu.be/MgklHrz_Oyw 

ii. https://www.youtube.com/watch?v=TOQKrys9AwE&t=231s 

iii. https://youtu.be/OiHUtesdw2s 

iv. https://youtu.be/zfi0lsGsmRI 

v. https://www.youtube.com/watch?v=UDD6CnVhLUQ 

vi. https://www.youtube.com/watch?v=TOQKrys9AwE&t=231s 

vii. https://www.youtube.com/watch?v=TOQKrys9AwE&t=231s 

the original idea space is described in: 

https://www.youtube.com/watch?v=uAl7g5aJ2iA&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=1 

on a personal note, would Dr andy Davies consider this as valid UX experiences and be consider as submission 

towards academic validity, or is it just fun to create?? 

https://www.youtube.com/watch?v=lsy4ncAYErI&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=3 

https://www.youtube.com/watch?v=zfi0lsGsmRI&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=4 

https://www.youtube.com/watch?v=XSfSpY4r0B0&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=15 

https://www.youtube.com/watch?v=VzWW3mdzuC8&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=17 

https://www.youtube.com/watch?v=fBgAPoB95kc&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=18 

https://www.youtube.com/watch?v=iJvSN-cm1s0&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=20 

https://www.youtube.com/watch?v=6JpdytrFgLw&list=PLOnIlRYk-3iFdQaVNy50iuaSc8I4H2lsF&index=26 

these are ideas I had a few years ago in game development. 

https://www.youtube.com/watch?v=iJ2RvLS_7hc&list=PLOnIlRYk-3iFawkWFDQy0ToZShKdmQpX6&index=1 

for note FS22 has only just been released and is a rich environment for xml and UI for models. 

This could be done very quickly: https://www.youtube.com/watch?v=ShlarMyM3cc&list=PLOnIlRYk-

3iFawkWFDQy0ToZShKdmQpX6&index=8 

About the time it was being developed, we had ideas: https://www.youtube.com/playlist?list=PLOnIlRYk-

3iEHEqA6hsJv-e6T_vsbhd5Q 
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FUTURE THINKING 

Modified Newtonian Dynamics (MOND) is a hypothesis that proposes an alternative to Newton's law of 

universal gravitation and Einstein's theory of General Relativity. It was formulated by Mordechai Milgrom in 

1983 to address certain astronomical observations that cannot be explained adequately by the standard model 

of cosmology, particularly the behaviour of galaxies and the discrepancy between the mass of visible matter 

and the gravitational effect observed (which is commonly attributed to dark matter). 

Key aspects of MOND include: 

i. Low Acceleration Threshold: MOND introduces the idea that Newton's laws of motion are not 

entirely accurate at very low accelerations, such as those found in the outer regions of galaxies. Below 

a certain threshold, the effective force of gravity is stronger than predicted by Newtonian physics. 

ii. Galactic Rotation Curves: One of the primary motivations for MOND was to explain the flat rotation 

curves of galaxies without invoking dark matter. In Newtonian gravity, the rotational speed of stars in 

a galaxy should decrease at larger distances from the galaxy's centre. However, observations show 

that these speeds remain more or less constant (flat rotation curve), which suggests the presence of 

an unseen mass (dark matter) or a modification in the laws of gravity (as MOND proposes). 

iii. Tully-Fisher Relation: MOND naturally accounts for the empirical Tully-Fisher relation, which 

correlates the luminosity of a spiral galaxy with its rotational velocity. Under MOND, this relation is a 

direct consequence of the modified dynamics. 

iv. Criticism and Challenges: Despite its successes in explaining certain galactic phenomena, MOND faces 

challenges. It does not naturally fit into the framework of General Relativity, and it has difficulty 

accounting for observations at larger cosmological scales, like the cosmic microwave background 

radiation and the distribution of galaxies in clusters. Additionally, phenomena such as gravitational 

lensing and certain galaxy cluster dynamics are more easily explained by the presence of dark matter. 

v. Alternatives and Extensions: Various extensions and alternatives to MOND have been proposed, 

attempting to reconcile it with General Relativity and other cosmological observations. These include 

theories like TeVeS (Tensor–Vector–Scalar Gravity) and others that attempt to modify the laws of 

gravity at different scales. 

MOND remains a topic of active research and debate in the astrophysical community. It highlights the ongoing 

quest to understand the true nature of gravity and the composition of the universe. 

To describe a mathematical curve that oscillates between -1 and 1, with both positive and negative portions, 

you can use a sine or cosine function, which are fundamental trigonometric functions. These functions 

naturally oscillate between -1 and 1 and are commonly used to represent periodic phenomena. 

Here's a basic example using the sine function: 

f(x)=sin(x) 

In this equation, x represents the angle in radians, and (x), the value of the sine function, varies 

between -1 and 1 as x changes. The curve sin f(x)=sin(x) crosses the x-axis (where the function 

equals 0) at x=0, π, 2π, and so on. 

The cosine function is similar but starts at 1 when x=0: 

f(x)=cos(x) 



Both of these functions exhibit a wave-like pattern that oscillates above and below the x-axis, with peaks at 1 

and troughs at -1. 

If you want a curve that tends more sharply towards -1 and 1, you can modify these functions. For instance, a 

sine function with a steeper curve might look like: 

f(x)=sin2(x) 

This function squares the result of the sine function, which makes the curve steeper as it approaches 1 and -1, 

but still oscillates between these values. However, note that squaring the sine function would actually 

constrain the output to be non-negative (between 0 and 1), so for the original requirement (oscillating 

between -1 and 1), the simple sine or cosine function would be more appropriate. 

THE PYTHON SCRIPT:  

import matplotlib.pyplot as plt 

import numpy as np 

 

# Define the range for x 

x = np.linspace(-2 * np.pi, 2 * np.pi, 1000) 

 

# Define the sine and cosine functions 

y_sine = np.sin(x) 

y_cosine = np.cos(x) 

 

# Plotting the sine function 

plt.figure(figsize=(10, 4)) 

plt.plot(x, y_sine, label='f(x) = sin(x)') 

plt.title("Sine Function: f(x) = sin(x)") 

plt.xlabel('x') 

plt.ylabel('f(x)') 

plt.axhline(0, color='black', linewidth=0.5) 

plt.axvline(0, color='black', linewidth=0.5) 

plt.grid(True) 

plt.legend() 

plt.show() 

 

# Plotting the cosine function 

plt.figure(figsize=(10, 4)) 

plt.plot(x, y_cosine, label='f(x) = cos(x)') 

plt.title("Cosine Function: f(x) = cos(x)") 

plt.xlabel('x') 

plt.ylabel('f(x)') 

plt.axhline(0, color='black', linewidth=0.5) 

plt.axvline(0, color='black', linewidth=0.5) 

plt.grid(True) 

plt.legend() 

plt.show() 

 



The Modified Newtonian Dynamics (MOND) theory primarily alters the Newtonian 

force law to account for the observed dynamics of galaxies without invoking dark 

matter. The MOND formula is generally represented as follows: 

F=m⋅a⋅μ(a0a) 

Here, 

F is the force, 

m is the mass, 

a is the acceleration, 

μ(x) is an interpolation function, and 

0a0 is a characteristic acceleration constant of MOND, below which the Newtonian 

dynamics are not applicable. 

The function μ(x) behaves as follows: 

1μ(x)≈1 when ≫1 (i.e., at high accelerations, the law reduces to Newton's second 

law), 

μ(x)≈x when ≪1x≪1 (i.e., at low accelerations, the law deviates from Newtonian 

dynamics, leading to the MOND regime). 

This modification of Newton's law in MOND is specifically designed to address the 

behaviour of astronomical objects in regimes where the gravitational acceleration is 

very small. The exact form of the function μ(x) can vary in different formulations of 

MOND, but its general behaviour is to transition between the Newtonian regime at 

high accelerations and the MOND regime at low accelerations. 

PYTHON SCRIPT 

def mond_force(m, a, a0): 

    """ 

    Calculate the force using the MOND formula. 

 

    Parameters: 

    m (float): mass 

    a (float): acceleration 

    a0 (float): characteristic acceleration constant of MOND 

 

    Returns: 



    float: force as per MOND 

    """ 

    def mu(x): 

        if x > 1: 

            return 1 

        elif x < 1: 

            return x 

        else: 

            # Define behavior at x = 1 if needed, or handle it as a special 

case 

            return 1 

 

    return m * a * mu(a / a0) 

 

# Example usage 

mass = 10  # mass in arbitrary units 

acceleration = 0.01  # acceleration in arbitrary units 

a0 = 1.2e-10  # a characteristic acceleration constant of MOND, in m/s² 

 

force = mond_force(mass, acceleration, a0) 

print("Force according to MOND:", force) 

 

Here’s a strategy to propose this collaborative effort: 

Hello Dr. Becky and fellow astronomy enthusiasts, 

We're embarking on an exciting project to develop a universal interface for Gaia data, focusing on binary stars 

and large-scale cosmic structures. Our aim is to make this rich data more accessible and to uncover new 

insights into the dynamics of star systems and galaxies. 

Your expertise in astrophysics and the creative minds in your viewer community can significantly enhance this 

endeavour. We would love to hear your thoughts and ideas on this project. Together, we can explore the 

vastness of our universe in ways never done before! 

For those interested in contributing or learning more, [link to project details]. Let's unravel the mysteries of 

the cosmos together! 

Best regards, 

l00king 

The sketch: 

Step 1: Developing a Universal Interface for Gaia Data 

Objective: Create an accessible and user-friendly interface that can facilitate the exploration and analysis of 

Gaia data, especially focusing on binary stars and large-scale star interactions. 

PROPOSAL OUTLINE:  

i. Introduction: Briefly explain the significance of Gaia data in understanding cosmic structures. 



ii. Need for the Interface: Describe how a universal interface can democratize data access and 

analysis. 

iii. Technical Approach: Outline the technical framework for the interface, including data visualization 

tools, filtering options, and analytical capabilities. 

Step 2: Data Sifting Plan 

i. Objective: Develop methodologies to efficiently sift through Gaia data to identify key areas of 

interest in binary star systems and larger star group dynamics. 

ii. Collaborative Approach: 

iii. Crowdsourcing Ideas: Encourage Dr. Becky’s viewers to contribute ideas on how to analyse and 

interpret the data. 

iv. Data Challenges: Organize online challenges or hackathons inviting participants to explore specific 

aspects of Gaia data. 

Step 3: Reaching Out to Dr. Becky Smethurst 

APPEAL FOR COLLABORATION:  

i. Draft a Comment: Compose an engaging and concise comment for her YouTube channel, 

highlighting the project's aim and its significance in astrophysics. 

ii. Express the Need for Expertise: Emphasize how Dr. Becky's expertise and her viewers' diverse 

perspectives can contribute significantly to the project. 

iii. Engaging Her Viewers: 

iv. Call to Action: Include a clear call to action in the comment, inviting viewers to participate, 

contribute ideas, or use the data interface. 

v. Incentivize Participation: Consider offering recognition, certificates, or opportunities to co-author 

in any potential publications that may arise from this collaboration. 

  



To be considered https://www.youtube.com/watch?v=AkN5AL8Vx8k  

FAO Rich: https://youtu.be/cs6iw572LLs this what the probe delivers       the material science in a 

nutshell       https://youtu.be/2smnlT-PKB4  

import matplotlib.pyplot as plt 

import numpy as np 

from mpl_toolkits.mplot3d import Axes3D 

 

# Define the radius of the sphere (in arbitrary units) 

radius = 15  # Assuming the radius as 15 for illustration 

 

# Define the number of points (increase for higher resolution) 

num_pts = 1000 

 

fig = plt.figure() 

ax = fig.add_subplot(111, projection='3d') 

 

# Create a sphere 

u = np.linspace(0, 2 * np.pi, num_pts) 

v = np.linspace(0, np.pi, num_pts) 

x = radius * np.outer(np.cos(u), np.sin(v)) 

y = radius * np.outer(np.sin(u), np.sin(v)) 

z = radius * np.outer(np.ones(np.size(u)), np.cos(v)) 

 

# Plot the sphere 

ax.plot_surface(x, y, z, color='b') 

 

plt.show() 

 

To create a projection of the James Webb Space Telescope (JWST) data or images, we need to consider several 

key aspects: 

i. Field of View (FoV): The JWST's instruments have different fields of view, which is the area of the 

sky they can observe at one time. For example, the Near-Infrared Camera (NIRCam) has a field of view 

of about 2.2 arcminutes x 4.4 arcminutes for each of its two modules. 

ii. Angular Resolution: This is the smallest angle between two objects that the telescope can 

distinguish. JWST's angular resolution varies based on the instrument and the wavelength of light. For 

NIRCam, it ranges around 0.031 arcseconds at 2 micrometres. 

iii. Pixel Size: The size of each pixel in the JWST's detectors affects how data is represented. NIRCam, 

for instance, has a pixel scale of about 0.031 arcseconds per pixel. 

iv. Projection Type: Typically, astronomical data are projected onto a two-dimensional plane for 

analysis. The type of projection (e.g., Mercator, Mollweide) can vary based on the data and the 

intended use. 

CREATING A JWST PROJECTION IN PYTHON 

https://www.youtube.com/watch?v=AkN5AL8Vx8k
https://youtu.be/cs6iw572LLs
https://youtu.be/2smnlT-PKB4


To simulate a JWST projection, you could use astronomical data processing libraries like Astropy in Python. 

Here's a simple framework for how such a script might look, keeping in mind that actual JWST data would be 

required for a genuine projection: 

from astropy.io import fits 

import matplotlib.pyplot as plt 

from astropy.wcs import WCS 

 

# Example file path to a JWST data file (FITS format) 

file_path = 'path_to_jwst_data.fits' 

 

# Open the FITS file and load data 

with fits.open(file_path) as hdul: 

    data = hdul[0].data 

    header = hdul[0].header 

 

# Set up the World Coordinate System 

wcs = WCS(header) 

 

# Plot the data 

plt.figure(figsize=(10, 10)) 

plt.subplot(projection=wcs) 

plt.imshow(data, origin='lower', cmap='gray') 

plt.xlabel('RA') 

plt.ylabel('Dec') 

plt.title('JWST Data Projection') 

plt.show() 

 

This script is a basic representation and would need actual data to function. It assumes the use of a FITS file, 

which is a common format for astronomical data. The WCS (World Coordinate System) is used to correctly 

project the celestial coordinates (Right Ascension, RA; Declination, Dec) onto a 2D image. 

For a specific and accurate JWST data projection, you would need: 

i. Actual JWST data in FITS format. 

ii. Specific details about the instrument and observation mode. 

iii. Appropriate libraries and tools for data processing and visualization. 

This framework can be a starting point and modified according to the specifics of the data and the goals of 

your project. 

To calculate how many pixels from the James Webb Space Telescope (JWST) would be needed to represent a 

sphere, such as the observable universe, we first need to understand a few key points: 

The Size of the Sphere: You mentioned a radius of 15 billion light-years. The diameter would thus be 30 billion 

light-years. 

Conversion to Arcseconds: To calculate how many pixels cover the sphere, we need to convert the sphere's 

surface area into the same units used for JWST's resolution (arcseconds). This involves converting linear 

distance to angular size, which depends on the distance from the observer to the object. For the observable 



universe, this is an extremely complex calculation due to the expansion of the universe and the fact that we're 

looking at a spherical surface, not a flat image. 

JWST's Resolution: At around 0.031 arcseconds per pixel at 2 micrometres, this is the finest detail JWST can 

resolve. 

The challenge is that JWST measures angles on the sky, not distances. So, the number of pixels needed to 

cover a sphere of the observable universe is not a straightforward calculation. JWST's resolution applies to a 

small field of view, not the entire sky or a large spherical surface. 

However, for a rough estimation, we can consider the total sky area JWST would need to cover: 

The total sky area is 4π steradians. 

A steradian (symbol: sr) is the SI unit of solid angle measurement in three-dimensional space. Just as the radian 

is a measure of angle in two dimensions (representing the ratio of arc length to radius in a circle), the steradian 

measures angles in three dimensions. It helps quantify how large an object appears to an observer's eye from 

a particular point in space. 

To understand a steradian more intuitively: 

Sphere and Steradian: Imagine a sphere cantered around an observation point. If you project a unit area (1 

square meter, for instance) onto the surface of a sphere with a radius of 1 meter, the solid angle this area 

subtends at the centre of the sphere is 1 steradian. 

Total Solid Angle of a Sphere: The total solid angle around a point in 3D space is  4π steradians. This comes 

from the formula for the surface area of a sphere (4πr2) divided by 2r2 (since the radius squared is the 

definition of the unit area in steradians). 

Applications: Steradians are used in various fields, including physics, astronomy, and radiometry, to measure 

things like luminous flux emitted by a light source in a particular direction, the field of view of telescopes or 

cameras, or the radiant intensity of a source. 

Understanding steradians is crucial for interpreting astronomical data and making calculations related to the 

field of view or light emission in three-dimensional space. 

If you use the diameter instead of the radius in the calculations involving steradians, the relationship changes 

slightly. Let's break down the mathematics: 

The total solid angle of a sphere in steradians is calculated using the sphere's surface area and its radius. The 

formula for the surface area A of a sphere is 4πr2, where r is the radius of the sphere. 

If you want to use the diameter d instead, remember that the diameter is twice the radius d=2r). Therefore, 

the radius r is half the diameter (2r=2d). 

Substituting r with d/2 in the surface area formula gives: 

2A=4π(2/d)2 



Simplifying this, we get: 

A=πd2 

This is the formula for the surface area of a sphere using its diameter. 

Now, for the solid angle in steradians, the surface area of a sphere is divided by the square of its radius. If you 

use the diameter, the formula would change to: 

Solid Angle=Surface Area/ (d/2)2
 

Substituting A=πd2 into the above formula, you get: 

Solid Angle= Solid Angle=( πd2/2d)2 

This simplifies to: 

Solid Angle=4π 

So, the total solid angle around a point in 3D space remains 4π steradians, whether you use the radius or the 

diameter in the calculation. The key difference is in how you express the sphere's surface area in terms of 

radius or diameter. 

One steradian corresponds to about (180/π)2×602×602 arcseconds squared (since there are 60 

arcminutes in a degree and 60 arcseconds in an arcminute). 

Therefore, the total sky in arcseconds squared is: 

×(180/π)2×602×602. 

Dividing this by the area that one JWST pixel covers (0.03120.0312 arcseconds squared) gives the total 

number of pixels needed to cover the whole sky. 

Calculate the total sky area in arcseconds squared:  

Sky Area=4π×(π180)2×602×602 

Calculate the area covered by one JWST pixel: 

Pixel Area=0.0312 

Divide the total sky area by the area of one pixel to get the total number of pixels: 

Total Pixels=Total Sky Area/Pixel Area 

This calculation will give you an estimate of how many pixels from the JWST would be needed to cover the 

entire sky, which is a two-dimensional representation. Representing a three-dimensional sphere like the 

observable universe is a more complex task and requires additional considerations beyond the scope of this 



calculation. The number you get will be an approximation and should be interpreted within the context of 

these limitations. 

import numpy as np 

 

# Constants 

arcseconds_per_steradian = (180 / np.pi) ** 2 * 60 ** 2 * 60 ** 2 

total_sky_steradians = 4 * np.pi 

jwst_pixel_area_arcsec2 = 0.031 ** 2 

 

# Total sky area in arcseconds squared 

total_sky_arcsec2 = total_sky_steradians * arcseconds_per_steradian 

 

# Number of pixels needed to cover the total sky 

total_pixels = total_sky_arcsec2 / jwst_pixel_area_arcsec2 

 

# Convert the number of pixels to a more readable format 

total_pixels_formatted = "{:.8e}".format(total_pixels) 

 

print("Total number of JWST pixels needed to cover the sky:", 

total_pixels_formatted) 

 

This script will calculate the estimated number of JWST pixels required to cover the entire sky, given its 

angular resolution. You can run this script in any standard Python environment with NumPy installed 

to get the result. Remember, this calculation provides a theoretical estimate for a two-dimensional 

representation of the sky, not for a three-dimensional sphere. 

When dealing with measurements, whether in the realm of the very small (like quantum scales) or the very 

large (such as astronomical distances), the choice between using radius (r) or diameter (d) usually depends on 

the context and what makes the calculation or the conceptualization easier. For modeling spheres in AI or any 

computational model, the choice again depends on the specific requirements of the model and the nature of 

the data being used. 

CONTEXTUAL PREFERENCES:  

i. Quantum Scales: At quantum scales, dimensions are often so small that using the diameter can 

sometimes provide a more intuitive measure. For example, in particle physics, diameters are often 

used to describe particles and subatomic structures. 

ii. Astronomical Scales: In astronomy, the radius is more commonly used, especially when discussing 

celestial bodies like stars and planets. This is partly due to historical conventions and partly because 

the radius directly relates to other important characteristics like volume and surface area. 

INTEGRATING SPHERE MATHEMATICS INTO AI MODELS:  

i. Choosing Radius or Diameter: When building an AI model that involves spherical mathematics, 

you can choose to use either radius or diameter. The key is consistency and clarity in how you define 

and use these measures. For ease of calculations involving surface area and volume, the radius is 

often preferred. 



ii. Data Representation: Ensure that the data used in the model is consistently represented. If the 

data set uses radius for spherical measurements, your model should also use radius unless there's a 

compelling reason to convert to diameter. 

iii. Calculations and Algorithms: When programming the model, use mathematical formulas that 

correspond to the chosen measure. For sphere-related calculations (like surface area, volume, or 

calculations involving solid angles), adapt the formulas accordingly. 

iv. Visualization and Interpretation: If your AI model involves visualizing data or interpreting results 

related to spheres, choose the measure (radius or diameter) that makes the most sense for your 

target audience or the specific application. 

v. Scalability: Consider the scalability of the model. For very large or very small scales, you might need 

to adjust the precision of your calculations. Floating-point arithmetic in computers can introduce 

errors, especially for very small or very large numbers. 

In summary, whether to use radius or diameter in AI models involving spheres depends on the nature of the 

data, the requirements of the model, and the context in which the model will be used. Consistency and clarity 

in the use of these measures are crucial for the accuracy and reliability of the model. 

expressing the mathematics of circles and spheres in terms of diameter (d) can simplify the presentation and 

make the numbers more intuitive to handle. Let's define the key formulas: 

FOR A CIRCLE:  

Diameter (d): The longest straight line that can be drawn across the circle, passing through the centre. 

Circumference (C): The total length around the circle. The formula in terms of diameter is: 

C=π×d 

Area (A): The amount of space enclosed by the circle. The formula in terms of diameter is: 

A=4π×d2 This is derived from the standard area formula πr2 by substituting r=2/d. 

FOR A SPHERE:  

Diameter (d): The longest straight line that can be drawn through the sphere, passing through the centre. 

Surface Area (SA): The total area covered by the surface of the sphere. The formula in terms of diameter is: 

A=π×d2 

This is derived from the standard surface area formula 4πr2 by substituting r=2/d. 

Volume (V): The amount of space enclosed by the sphere. The formula in terms of diameter is: 

V=6π×d3 This is derived from the standard volume formula 3/4πr3 by substituting r=2/d. 

Using the diameter in these formulas makes the numbers more straightforward, especially in contexts where 

the diameter is a more natural or convenient measure than the radius. This approach can be particularly useful 

in presentations or educational settings, where ease of understanding is crucial. 



# Python definitions for calculations involving circles and spheres using 

diameter 

 

def circle_circumference(d): 

    """ 

    Calculate the circumference of a circle given its diameter. 

     

    Parameters: 

    d (float): Diameter of the circle 

     

    Returns: 

    float: Circumference of the circle 

    """ 

    return 3.141592653589793 * d 

 

def circle_area(d): 

    """ 

    Calculate the area of a circle given its diameter. 

     

    Parameters: 

    d (float): Diameter of the circle 

     

    Returns: 

    float: Area of the circle 

    """ 

    return 3.141592653589793 / 4 * d ** 2 

 

def sphere_surface_area(d): 

    """ 

    Calculate the surface area of a sphere given its diameter. 

     

    Parameters: 

    d (float): Diameter of the sphere 

     

    Returns: 

    float: Surface area of the sphere 

    """ 

    return 3.141592653589793 * d ** 2 

 

def sphere_volume(d): 

    """ 

    Calculate the volume of a sphere given its diameter. 

     

    Parameters: 

    d (float): Diameter of the sphere 

     

    Returns: 

    float: Volume of the sphere 



    """ 

    return 3.141592653589793 / 6 * d ** 3 

 

# Example usage: 

diameter = 10  # Example diameter 

print("Circumference of circle:", circle_circumference(diameter)) 

print("Area of circle:", circle_area(diameter)) 

print("Surface area of sphere:", sphere_surface_area(diameter)) 

print("Volume of sphere:", sphere_volume(diameter)) 

 

 


